3.2.11 \(\int \frac {x^5 (a+b \text {csch}^{-1}(c x))}{(d+e x^2)^3} \, dx\) [111]

3.2.11.1 Optimal result
3.2.11.2 Mathematica [C] (warning: unable to verify)
3.2.11.3 Rubi [A] (verified)
3.2.11.4 Maple [F]
3.2.11.5 Fricas [F]
3.2.11.6 Sympy [F(-1)]
3.2.11.7 Maxima [F]
3.2.11.8 Giac [F]
3.2.11.9 Mupad [F(-1)]

3.2.11.1 Optimal result

Integrand size = 21, antiderivative size = 694 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\frac {b c d \sqrt {1+\frac {1}{c^2 x^2}}}{8 \left (c^2 d-e\right ) e^2 \left (e+\frac {d}{x^2}\right ) x}-\frac {a+b \text {csch}^{-1}(c x)}{4 e \left (e+\frac {d}{x^2}\right )^2}-\frac {a+b \text {csch}^{-1}(c x)}{2 e^2 \left (e+\frac {d}{x^2}\right )}-\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{b e^3}+\frac {b \left (c^2 d-2 e\right ) \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{8 \left (c^2 d-e\right )^{3/2} e^{5/2}}+\frac {b \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 \sqrt {c^2 d-e} e^{5/2}}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-e^{-2 \text {csch}^{-1}(c x)}\right )}{e^3}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,e^{-2 \text {csch}^{-1}(c x)}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 e^3} \]

output
1/4*(-a-b*arccsch(c*x))/e/(e+d/x^2)^2+1/2*(-a-b*arccsch(c*x))/e^2/(e+d/x^2 
)-(a+b*arccsch(c*x))^2/b/e^3+1/8*b*(c^2*d-2*e)*arctan((c^2*d-e)^(1/2)/c/x/ 
e^(1/2)/(1+1/c^2/x^2)^(1/2))/(c^2*d-e)^(3/2)/e^(5/2)-(a+b*arccsch(c*x))*ln 
(1-1/(1/c/x+(1+1/c^2/x^2)^(1/2))^2)/e^3+1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c 
/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/e^3+1/2*(a+ 
b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c 
^2*d+e)^(1/2)))/e^3+1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/ 
2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/e^3+1/2*(a+b*arccsch(c*x))*ln(1 
+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/e^3+ 
1/2*b*polylog(2,1/(1/c/x+(1+1/c^2/x^2)^(1/2))^2)/e^3+1/2*b*polylog(2,-c*(1 
/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/e^3+1/2*b 
*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1 
/2)))/e^3+1/2*b*polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/ 
2)+(-c^2*d+e)^(1/2)))/e^3+1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(- 
d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/e^3+1/2*b*arctan((c^2*d-e)^(1/2)/c/x/ 
e^(1/2)/(1+1/c^2/x^2)^(1/2))/e^(5/2)/(c^2*d-e)^(1/2)+1/8*b*c*d*(1+1/c^2/x^ 
2)^(1/2)/(c^2*d-e)/e^2/(e+d/x^2)/x
 
3.2.11.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.89 (sec) , antiderivative size = 2023, normalized size of antiderivative = 2.91 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Result too large to show} \]

input
Integrate[(x^5*(a + b*ArcCsch[c*x]))/(d + e*x^2)^3,x]
 
output
-1/4*(a*d^2)/(e^3*(d + e*x^2)^2) + (a*d)/(e^3*(d + e*x^2)) + (a*Log[d + e* 
x^2])/(2*e^3) + b*(-1/16*(d*((I*c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)]*x)/(Sqrt[d 
]*(c^2*d - e)*((-I)*Sqrt[d] + Sqrt[e]*x)) - ArcCsch[c*x]/(Sqrt[e]*((-I)*Sq 
rt[d] + Sqrt[e]*x)^2) - ArcSinh[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d - e)*Lo 
g[(4*d*Sqrt[c^2*d - e]*Sqrt[e]*(Sqrt[e] + I*c*(c*Sqrt[d] - Sqrt[c^2*d - e] 
*Sqrt[1 + 1/(c^2*x^2)])*x))/((2*c^2*d - e)*(Sqrt[d] + I*Sqrt[e]*x))])/(d*( 
c^2*d - e)^(3/2))))/e^(5/2) - (d*(((-I)*c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)]*x) 
/(Sqrt[d]*(c^2*d - e)*(I*Sqrt[d] + Sqrt[e]*x)) - ArcCsch[c*x]/(Sqrt[e]*(I* 
Sqrt[d] + Sqrt[e]*x)^2) - ArcSinh[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d - e)* 
Log[((4*I)*d*Sqrt[c^2*d - e]*Sqrt[e]*(I*Sqrt[e] + c*(c*Sqrt[d] + Sqrt[c^2* 
d - e]*Sqrt[1 + 1/(c^2*x^2)])*x))/((2*c^2*d - e)*(Sqrt[d] - I*Sqrt[e]*x))] 
)/(d*(c^2*d - e)^(3/2))))/(16*e^(5/2)) - (((7*I)/16)*Sqrt[d]*(-(ArcCsch[c* 
x]/(I*Sqrt[d]*Sqrt[e] + e*x)) - (I*(ArcSinh[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt 
[d]*Sqrt[e]*(I*Sqrt[e] + c*(c*Sqrt[d] + I*Sqrt[-(c^2*d) + e]*Sqrt[1 + 1/(c 
^2*x^2)])*x))/(Sqrt[-(c^2*d) + e]*(I*Sqrt[d] + Sqrt[e]*x))]/Sqrt[-(c^2*d) 
+ e]))/Sqrt[d]))/e^(5/2) + (((7*I)/16)*Sqrt[d]*(-(ArcCsch[c*x]/((-I)*Sqrt[ 
d]*Sqrt[e] + e*x)) + (I*(ArcSinh[1/(c*x)]/Sqrt[e] - Log[(-2*Sqrt[d]*Sqrt[e 
]*(Sqrt[e] + c*(I*c*Sqrt[d] + Sqrt[-(c^2*d) + e]*Sqrt[1 + 1/(c^2*x^2)])*x) 
)/(Sqrt[-(c^2*d) + e]*(Sqrt[d] + I*Sqrt[e]*x))]/Sqrt[-(c^2*d) + e]))/Sqrt[ 
d]))/e^(5/2) + (Pi^2 - (4*I)*Pi*ArcCsch[c*x] - 8*ArcCsch[c*x]^2 + 32*Ar...
 
3.2.11.3 Rubi [A] (verified)

Time = 1.92 (sec) , antiderivative size = 766, normalized size of antiderivative = 1.10, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6858, 6238, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 6858

\(\displaystyle -\int \frac {x \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^3}d\frac {1}{x}\)

\(\Big \downarrow \) 6238

\(\displaystyle -\int \left (\frac {x \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^3}-\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^3 \left (\frac {d}{x^2}+e\right ) x}-\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right )^2 x}-\frac {d \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )^3 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 e^3}+\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 e^3}+\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 e^3}+\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 e^3}-\frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{2 e^2 \left (\frac {d}{x^2}+e\right )}-\frac {a+b \text {arcsinh}\left (\frac {1}{c x}\right )}{4 e \left (\frac {d}{x^2}+e\right )^2}-\frac {\left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )^2}{b e^3}-\frac {\log \left (1-e^{-2 \text {arcsinh}\left (\frac {1}{c x}\right )}\right ) \left (a+b \text {arcsinh}\left (\frac {1}{c x}\right )\right )}{e^3}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arcsinh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 e^3}+\frac {b \operatorname {PolyLog}\left (2,e^{-2 \text {arcsinh}\left (\frac {1}{c x}\right )}\right )}{2 e^3}+\frac {b \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} x \sqrt {\frac {1}{c^2 x^2}+1}}\right )}{2 e^{5/2} \sqrt {c^2 d-e}}+\frac {b \left (c^2 d-2 e\right ) \arctan \left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} x \sqrt {\frac {1}{c^2 x^2}+1}}\right )}{8 e^{5/2} \left (c^2 d-e\right )^{3/2}}+\frac {b c d \sqrt {\frac {1}{c^2 x^2}+1}}{8 e^2 x \left (c^2 d-e\right ) \left (\frac {d}{x^2}+e\right )}\)

input
Int[(x^5*(a + b*ArcCsch[c*x]))/(d + e*x^2)^3,x]
 
output
(b*c*d*Sqrt[1 + 1/(c^2*x^2)])/(8*(c^2*d - e)*e^2*(e + d/x^2)*x) - (a + b*A 
rcSinh[1/(c*x)])/(4*e*(e + d/x^2)^2) - (a + b*ArcSinh[1/(c*x)])/(2*e^2*(e 
+ d/x^2)) - (a + b*ArcSinh[1/(c*x)])^2/(b*e^3) + (b*(c^2*d - 2*e)*ArcTan[S 
qrt[c^2*d - e]/(c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)]*x)])/(8*(c^2*d - e)^(3/2)* 
e^(5/2)) + (b*ArcTan[Sqrt[c^2*d - e]/(c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)]*x)]) 
/(2*Sqrt[c^2*d - e]*e^(5/2)) - ((a + b*ArcSinh[1/(c*x)])*Log[1 - E^(-2*Arc 
Sinh[1/(c*x)])])/e^3 + ((a + b*ArcSinh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^Arc 
Sinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*e^3) + ((a + b*ArcSinh[ 
1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) 
 + e])])/(2*e^3) + ((a + b*ArcSinh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcSinh 
[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*e^3) + ((a + b*ArcSinh[1/(c 
*x)])*Log[1 + (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e 
])])/(2*e^3) + (b*PolyLog[2, E^(-2*ArcSinh[1/(c*x)])])/(2*e^3) + (b*PolyLo 
g[2, -((c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c^2*d) + e]))])/( 
2*e^3) + (b*PolyLog[2, (c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(Sqrt[e] - Sqrt[-(c 
^2*d) + e])])/(2*e^3) + (b*PolyLog[2, -((c*Sqrt[-d]*E^ArcSinh[1/(c*x)])/(S 
qrt[e] + Sqrt[-(c^2*d) + e]))])/(2*e^3) + (b*PolyLog[2, (c*Sqrt[-d]*E^ArcS 
inh[1/(c*x)])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*e^3)
 

3.2.11.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6238
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[e, c^ 
2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6858
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
3.2.11.4 Maple [F]

\[\int \frac {x^{5} \left (a +b \,\operatorname {arccsch}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{3}}d x\]

input
int(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^3,x)
 
output
int(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^3,x)
 
3.2.11.5 Fricas [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

input
integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 
output
integral((b*x^5*arccsch(c*x) + a*x^5)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 
 + d^3), x)
 
3.2.11.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

input
integrate(x**5*(a+b*acsch(c*x))/(e*x**2+d)**3,x)
 
output
Timed out
 
3.2.11.7 Maxima [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

input
integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 
output
1/4*a*((4*d*e*x^2 + 3*d^2)/(e^5*x^4 + 2*d*e^4*x^2 + d^2*e^3) + 2*log(e*x^2 
 + d)/e^3) + b*integrate(x^5*log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/(e^3*x^6 
 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), x)
 
3.2.11.8 Giac [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

input
integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 
output
integrate((b*arccsch(c*x) + a)*x^5/(e*x^2 + d)^3, x)
 
3.2.11.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \]

input
int((x^5*(a + b*asinh(1/(c*x))))/(d + e*x^2)^3,x)
 
output
int((x^5*(a + b*asinh(1/(c*x))))/(d + e*x^2)^3, x)